Part Number Hot Search : 
SAM5370 10X20 T3A100 01502 IRF241 120T3 M62708SL 225025
Product Description
Full Text Search
 

To Download IRG4BC30W Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 91629A
IRG4BC30W
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications * Industry-benchmark switching losses improve efficiency of all power supply topologies * 50% reduction of Eoff parameter * Low IGBT conduction losses * Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability
C
VCES = 600V
G E
VCE(on) max. = 2.70V
@VGE = 15V, IC = 12A
n-channel
Benefits
* Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) * Of particular benefit to single-ended converters and boost PFC topologies 150W and higher * Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)
TO-220AB
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM VGE EARV PD @ T C = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy S Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw.
Max.
600 23 12 92 92 20 180 100 42 -55 to + 150 300 (0.063 in. (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight
Typ.
--- 0.50 --- 1.44
Max.
1.2 --- 80 ---
Units
C/W g
www.irf.com
1
4/24/2000
IRG4BC30W
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES V(BR)ECS
V(BR)CES/TJ
VCE(ON) VGE(th) VGE(th)/TJ gfe ICES
IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 -- Emitter-to-Collector Breakdown Voltage T 18 -- Temperature Coeff. of Breakdown Voltage -- 0.34 -- 2.1 Collector-to-Emitter Saturation Voltage -- 2.45 -- 1.95 Gate Threshold Voltage 3.0 -- Temperature Coeff. of Threshold Voltage -- -11 Forward Transconductance U 11 16 -- -- Zero Gate Voltage Collector Current -- -- -- -- Gate-to-Emitter Leakage Current -- --
Max. Units Conditions -- V VGE = 0V, IC = 250A -- V VGE = 0V, IC = 1.0A -- V/C VGE = 0V, IC = 1.0mA 2.7 IC = 12A VGE = 15V -- IC = 23A See Fig.2, 5 V -- IC = 12A , TJ = 150C 6.0 VCE = VGE, IC = 250A -- mV/C VCE = VGE, IC = 250A -- S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V A 2.0 VGE = 0V, VCE = 10V, TJ = 25C 1000 VGE = 0V, VCE = 600V, TJ = 150C 100 nA VGE = 20V
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Notes: Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V -- -- TJ = 25C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23 -- Energy losses include "tail" -- mJ See Fig. 9, 10, 13, 14 0.35 -- TJ = 150C, -- IC = 12A, VCC = 480V ns -- VGE = 15V, RG = 23 -- Energy losses include "tail" -- mJ See Fig. 11,13, 14 -- nH Measured 5mm from package -- VGE = 0V -- pF VCC = 30V See Fig. 7 -- = 1.0MHz
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R VCC = 80%(VCES), VGE = 20V, L = 10H, RG = 23,
(See fig. 13a)
T Pulse width 80s; duty factor 0.1%. U Pulse width 5.0s, single shot.
S Repetitive rating; pulse width limited by maximum
junction temperature.
2
www.irf.com
IRG4BC30W
40 F o r b o th :
T ria n g u la r w a v e :
30
Load Current ( A )
D uty c y c le: 50% TJ = 125 C T s ink = 90C G ate drive as s pec ified
P o w e r D i s si p a tio n = 2 1 W C la mp vo lta g e : 8 0 % o f ra te d
S q u a re wa ve: 20 6 0 % o f ra te d vo l ta g e
10 Id e a l d io de s
0 0.1 1 10
A
100
f, Frequenc y (k Hz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
100
100
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 150 C
10
TJ = 150 C
10
TJ = 25 C
TJ = 25 C
1
1 1
V = 15V 20s PULSE WIDTH
GE 10
0.1 5.0
V = 50V 5s PULSE WIDTH
CC 6.0 7.0 8.0 9.0 10.0 11.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
IRG4BC30W
M a xim u m D C C o lle c to r C u rre n t (A
25
V GE = 15V
3.0
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
20
I C = 24 A
2.5
15
I C = 12 A
2.0
10
IC = 6 A
5
0 25 50 75 100 125
A
150
1.5 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , C a s e Te m p e ra tu re (C )
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC)
1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.1 0.001 0.01
PDM t1 t2 1
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30W
2000
VGE , Gate-to-Emitter Voltage (V)
1500
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 12A
16
C, Capacitance (pF)
Cies
1000
12
8
500
C oes C res
4
0 1 10 100
0 0 10 20 30 40 50 60
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.5
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V V GE = 15V TJ = 25 C 0.4 I C = 12A
10
23 RG = Ohm VGE = 15V VCC = 480V
IC = 24 A
1
0.3
IC = 12 A IC = 6 A
0.2
0.1
0.1
0.0 0 10 20 30 40 50
0.01 -60 -40 -20
0
20
40
60
80 100 120 140 160
RGR, , Gate Resistance(Ohm) Gate Resistance () G
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
IRG4BC30W
1.5
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
RG TJ VCC VGE
23 = Ohm = 150 C = 480V = 15V
1000
VG E E 2 0V G= T J = 12 5 C
100
1.0
S A FE O P E R A TIN G A R E A
10
0.5
1
0.0 0 5 10 15 20 25 30
0 .1 1 10 100 1000
I C , Collector-to-emitter Current (A)
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
6
www.irf.com
IRG4BC30W
L 50V 1 00 0V VC *
D .U .T.
RL = 0 - 480V 480V 4 X IC@25C
480F 960V R
Q
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax ) * Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
IC L D river* 50V 1000V Q R S
* Driver same type as D.U.T., VC = 480V
D .U .T. VC
Fig. 14a - Switching Loss
Test Circuit
Q
R
9 0%
S
1 0% 90 %
VC
t d (o ff)
Fig. 14b - Switching Loss
Waveforms
10 % IC 5% t d (o n )
tr E on E ts = ( Eo n +E o ff )
tf t=5 s E o ff
www.irf.com
7
IRG4BC30W
Case Outline and Dimensions TO-220AB
2.8 7 (.1 1 3 ) 2.6 2 (.1 0 3 )
1 0 .5 4 (.4 1 5 ) 1 0 .2 9 (.4 0 5 )
3.78 (.149) 3.54 (.139) -A 6 .4 7 (.255) 6 .1 0 (.240) 1.15 (.0 45) M IN
-B-
4.69 (.185) 4.20 (.165)
1.32 (.05 2) 1.22 (.04 8)
4 1 5 .2 4 (.6 0 0 ) 1 4 .8 4 (.5 8 4 ) 1 2 3
N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2. 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL L IM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 20 A B .
3X
1 4 .0 9 (.5 5 5 ) 1 3 .4 7 (.5 3 0 )
3.96 (.1 60) 3.55 (.1 40)
LEAD 1234-
A S S IG N M E N T S G A TE C O L LE C T O R E M IT T E R C O L LE C T O R
4.06 (.160) 3.55 (.140)
0.93 (.037) 0.69 (.027)
MBAM
1 .4 0 (.0 5 5 ) 3 X 1 .1 5 (.0 4 5 ) 2 .5 4 (.1 0 0 ) 2X
3X
3X
0.55 (.0 22) 0.46 (.0 18)
0 .3 6 (.0 1 4 )
2.92 (.115 ) 2.64 (.104 )
CONFORMS TO JEDEC OUTLINE TO-220AB
D im e n s io n s in M illim e te rs a n d (In c h e s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRG4BC30W

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X